Convergent View

Thas is the first of George Schussel’s
two-part discussion on choosing tools
and languages for the client/server
architecture.

Now that you're convinced
that client/server is the architec-
ture for the future, the next ques-
tion is which application devel-
opment tools should your
GEORGE SCHUSSEL organization be using to imple-
ment that architecture. Sticking
to accepted market standards is always a safe
approach, as you are ensured of greater avail-
ability of add-on utilities, training materials,
and finished applications—with less risk, too.

Choosing standard tools and languages in
the 1970s was easy. Most custom applications
ran on mainframes. These applications were
typically built in COBOL, unless
you were among the adventure-
some 2 percent or so who
tried something unusual
like IPL or PL/1.

In the 1980s, COBOL was
still the predominant busi-
ness application language,
but proprietary 4GLs like
Natural, ADF, and FOCUS,
offering higher productivi-
ty, emerged as COBOL
competitors, Indeed, the
major proprietary 4GLs
built the user bases of thou-
sands of companies.

If you were really avant- \ v 28
garde and used PCs for serious -
application building in the
1980s, then one of the flavors of the dBASE lan-
guage was probably your language choice.

As an architecture, client/server has been
around since Sybase started selling SQL Server
in the late 1980s. When Gupta, Oracle, and
others started selling SQIL-based DBMS server
engines, the idea of a relational DBMS for the
server side of client/server computing became
an accepted norm. While some people now
look at object DBMS engines for handling com-
plex data or difficult performance problems,
the SQL engine approach, for typical business
applications, has 90 percent of the market.

Meanwhile, client/server developers must
now ask what language or tool facility will
emerge as the standard for writing the client
side of client/server applications.

14 Client/Server Today—April 1995

WHicH LANGUAGE SHOULD YOU SPEAK?

The difference between regular (character)
style programming and GUI or Windows pro-
gramming is the difference between straight-
line and event-driven programming. In a tradi-
tional COBOL-style world, the application
program is in control. The program drives the
user. In a GUI environment like Windows, it's
the other way around. Because events can be
invoked from all parts of the screen, the devel-
oper of a GUI application has to anticipate all
potential actions of a user and in all potential
orders. And other programs may also be run-
ning and interacting with this program.

Developing for such a situation is complex;
most people should have an advanced facility
to develop such applications, something easier
than the Clanguage. Surprisingly, until recent-
ly the vast majority of deployed or fielded

client/server applications had their client-
side logic written in C. That made
o sense, as native controls for pop-
ular GUISs, such as Motif and
Windows, were supported in
o \ C and C++ environments.
1 With the advent of new

Visual 4GLs like SQLWin-

dows, Omnis, ObjectView,
' VisualWorks, and Power-
Builder, access to these GUI
controls was made more easi-
ly available. You didn’t need
to know C. These products
have features like Data Win-

' / dows, which provide point-
and-click access to data stored
in SQL databases. You no
longer need to program in the

DBMS-specific APT or SQL to access
thatrelational data. In general, this new type of
tool provides three principal types of services
[or building client/server applications:

«-Interface Building: Creating what appears
to the end user on a PC or workstation. This
facility usually supports the most popular GUISs,
such as Windows, Macintosh, and Motif, - Cre-
ate Application Logic: This facility allows
scripts Lo be attached to events. These scripts
are normally written in the vendor’s propri-
etary language. It’s common to find scripting
languages thatlook like BASIC, Smalltalk, C-++,
or Xbase. : Connect to Database or Source: Pro-
vides for communication with server DBMS
where the application data resides. These con-
nections are automatically generated and are
in addition to such connectivity options as

Convergent View

dynamic and static SQL, ODBC, or other types of
remote procedure calls (RPCs). Based onthe find-
ings from informal surveys, it appears to me that,
until about a year ago, the majority of client/server
applications were written in C or C++.

The surge In Visual 4GLs

Beginning in 1994, however, a tremendous surge
in sales of Visual 4GLs occurred. I guess that a cur-
rent survey of production client/server applica-
tions would yield the finding that Visual 4GL and
C/C++ categories each have about 40 percent of the
fielded client/server applications. Another popu-
lar technology base for Visual 4GLs is the Smalltalk

Calculating the minuses in C++

Comparing C++ to COBOL is unfair to COBOL, which
actually was a marvelous feat of engineering, given the
technology of its day. The only marvelous thing about C++
is that anyone manages to get any work done in it at all.
Fortunately, most good programmers know that they can
avoid C++ by writing largely in C, steering clear of most
of the ridiculous features that they’ll probably never under-
stand anyway. Usually, this means writing their own non-
object-oriented tools to get just the features they need. OF
course, this means their code will be idiosyncratic, incom-
patible, and impossible to understand or reuse. But, a thin
veneer of C++ here and there is just enough to fool man-
agers into approving their projects.

—Excerpted from The UNIX-Haters Handbook, edited by Sim-
son Garfinkel, Daniel Weise, and Steven Strassmann, IDG Books,
1994,

language. Typified by tools such as Visual Works
(ParcPlace Systems), Smalltalk-based technologies
seem to account for about 15 percent of existing
applications. There are significant differences in
capability, ease of learning, and deployability of the
various proprietary Visual 4GLs.

What they all do share in common is that each is
based on a combination of proprietary languages
and screen-painting approaches, with the goal of
simplifying the development of client- based appli-
cations. This category is a descendant of the 4GLs
of the 1980s.

With PowerBuilder and Visual Basic leading the
way, these products have seen a huge surge in pop-
ularity over the last year. Where performance is
paramount, however, C-based technologies still
hold an important advantage. When training and
productivity are the issues, Visual 4GLs will pre-

16 Client/Server Today—April 1995

dominate.

Guidance for C and C++

Since COBOL is an industry standard that many
vendors provide, and the same applies to C, it’s
tempting to think of C and C++ as the logical follow-
on to the COBOL of the 1970s and 1980s. However,
Ctechnologyisalot tougher to master and atalower
level than COBOL.

The best analogy is to compare C and C++ appli-
cation development to building applications in 370
assembler code. If you are thinking of using C++ for
application development, it might be wise to read
The UNIX-Haters Handbook first (see box).

The outlook for Smalltalk

Smalltalk, which is an object-oriented language,
has the advantage of being a higher level in syntax
than G++. Since the best current technology for
building client-side tool sets is object-oriented,
Smalltalk is a logical candidate for the underlying
technology.

ParcPlace Systems with its Visual Works, IBM with
its VisualAge, and other companies like Digitalk agree
and are leading the development of this market.

Smalltalk, as the scripting language for this cate-
gory ol tool, is similar to a 3GL like COBOL in syn-
tactic difficulty. Ed Yourdon, Chairman of DCI’s
Software World Conference, has analogized
Smalltalk to the Apple Macintosh, a superior tech-
nology destined to play an important but minority
role.

A newer COBOL thinks Visual

For a language that was originally developed back
in 1960, COBOL has shown amazing longevity.
Much of the source of this longevity, of course, is the
investment in training and in knowledge of the esti-
mated 2 million COBOL programmers in the Unit-
ed States alone.

Now, products that have been developed by
Microfocus, Computer Associates, and IBM are pro-
viding visual and object-based enhancements for
the COBOL community. Think of a visual pro-
gramming environment like Visual Basic or Power-
Builder, but with COBOL for the scripting lan-
guage and an ability to encapsulate COBOL. code
into objects that can be activated from a button.

An experienced COBOL programmer can pick
up visual programming with one of these products
in about a month’s time.

That contrasts to the much more complete
retraining and many months required to pick up a
comparable skill level in C++, Smalltalk, or a tool
like PowerBuilder.

George Schussel is the founder and chairman of Digital
Consulting Inc. (DCI) in Andover, Mass. He can be
reached at CompuServe 74407,2472.

